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i. Introduction

One of the persistent themes at this workshop* has been the

differences between thermospheric measurements and models.

Sometimes the model is in error and at other times the

measurements are; but it also is possible for both to be

correct, yet have the comparison result in an apparent

disagreement. Several of the reasons for disagreement have been

pointed out by speakers at the various sessions. Our purpose

here is to collect these reasons for disagreement, and, whenever

possible, suggest methods of reducing or eliminating them. We
shall not discuss calibration, which was not discussed at this

meeting, and is extensively reported in the literature.

The six causes of disagreement which we shall discuss are:

Actual errors caused by our limited knowledge of gas-surface

interactions and by in-track winds; limitations of the

thermospheric general circulation models due to incomplete
knowledge of the energy sources and sinks as well as

incompleteness of the parameterization which must be employed;

and limitations imposed on the empirical models by the
conceptual framework and the transient waves.

2. Gas-Surface Interactions

Although gas-surface interactions have been extensively

studied in the laboratory since the end of World War II, few of

these investigations have been directly applicable to satellite

problems until the past several years, either because atomic

oxygen was not used, or because the energy range was much

different from that in the satellite case. One of the problems

is that atomic oxygen absorbs on many materials, drastically
changing the surface properties from those of the clean surfaces

which scientists prefer to study. I-3

In order to overcome these limitations, accommodation and

drag coefficients were measured in orbit on three paddlewheel
satellites. 4-6 The orbital decay responds to the incident

momentum, while the spin decay is caused mostly by the reemitted
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momentum. Nevertheless, there still was a parameter which had
to be determined from a model; actually, five different models
of the angular distribution of reemitted molecules, motivated
by laboratory measurements at lower energies, were employed.
These models are shown in Fig. i. All of the models are three-
dimensional: The figure actually illustrates their projection
on the plane of incidence. The corresponding accommodation
coefficients deduced from Ariel 2 which was in an orbit of
moderate eccentricity with perigee at 300 km, and Explorer 6,
which was in a highly eccentric orbit with perigee near 260 km,
are shown in Fig. 2. Beletsky deduced from Proton 2, which was
in an orbit of low eccentricity near 190 km, that the Maxwell
_i_^___** coefficient was 0.999. These measurements suggested

that in orbits of low and moderate eccentricity near 200 km the

reflection of molecules is to a close approximation diffuse and

completely accommodated. These are the assumptions which have

always been used since Sentman 7 first calculated the drag

coefficient of a long, attitude-controlled cylinder. The drag

coefficient of such a satellite is shown in Fig. 3, which is

from an unpublished calculation by Jerome Kainer of the

Aerospace Corporation.

At this workshop Marcos 8 has tabulated the ratios of

measured density to that computed from many models for four

cylindrical satellites and for three satellites of compact

shapes. All four cylindrical satellites have ratios to the

models i0 to 15% below those of satellites of compact shapes.

It therefore appears that there is incomplete accommodation on

the long sides of the cylinders, where air molecules strike the

satellite at grazing incidence. (Measurements at grazing

incidence could not be made using the paddlewheel satellites).

Moe and Tsang 9 have supplied equations for applying Schamberg's

formalism to data such as those obtained by Marcos. Marcos'

result could significantly impact the design of large

spacecraft, such as the Space Station. A recalculation of the

drag coefficients would also bring the measurements and models

closer together.

Another way of learning something about gas-surface

interactions in orbit is to compare measurements made by

different sensors as the altitude changes. _ Such a comparison

is shown in Table I. There appear to be systematic variations
with altitude. This is an area for future research.

Another kind of comparison II which may help us to

understand t_e interaction of helium with surfaces is

illustrated in Table 2. It should be obvious that helium will

not interact with surfaces in the same way as atomic oxygen

does. The analysis of these kinds of satellite data should

result in better agreement between measurements and models in
the future.

Swenson reported at this workshop that spacecraft glow
involves gas-surface interactions. This is an area of research
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which will affect optical sensors. Plastics seem to glow less,

but it is possible that atomic oxygen penetrates the plastic

lattice and decomposes it.

3. Errors caused by In-Track Winds

It is well known that the satellite acceleration, a, is

z Ms

where _ is the ambient air density, V the velocity of the

satellite relative to the air, C d is the drag coefficient, A N

is the projected area of the satellite normal to the airstream,

and M s is the mass of the satellite.

At low latitudes, and at geomagnetically quiet times, the

wind-induced errors in measurements by accelerometers, pressure

gauges, and mass spectrometers only amount to 2 or 3%, so they

are comparable with some other errors. But at high latitudes

during geomagnetic storms, winds of 1 km/s often are measured.

The satellite cannot distinguish the effect of its own orbital

motion from that of in-track winds when molecules strike it.

Because the accelerometer senses momentum transfer, the

fractional error in density _/p
W, is

 =Iv0 w?,
P _ vo "-

caused by an in-track wind,

%*#_ 2_W+W" -I

If W = 1 km/sec, and V o = 8 km/sec then

@_ _+A_= 6---_- 4

This is a 23% or 27% error, depending on whether the wind is

blowing in the same direction as the satellite orbital velocity

Vo, or in the opposite direction.

In cases in which adsorption can be neglected, 12 the equation

for the pressure in a gauge can be written

kT 4t 4 7_

where p is the pressure inside the gauge, V_ is its volume, T

its temperature and A o the area of its orifice; k is Boltzmann's

constant, t is the time, n_ is the number density of molecules

in the ambient air, Coo the speed of the ambient molecules, an_
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is the number of molecules which strike an area of 1 cm2in the

gauge from one side in one second. The function F(s cos_ )

depends on the speed ratio, s, and the angle _, between the
velocity vector and the normal to the orifice.

Because the speed of molecules is so great compared with

the dimensions of the gauge, influx and efflux usually reach

equilibrium within a hundredth of a second. In equilibrium

/
But for_ cos_) _ 3, which certainly is true if the gauge is

pointing into the airstream at 200 km altitude,

F (s cosp) = 2 s cos_ _ , S_peak=no Coo s = noV ,

where V is the satellite speed relative to the airstream. The

ratio of the accelerometer and gauge measurements is then

v"-C A,,, V ("QA 
'

where V = V o - W,

and m is the mean molecular mass. Since a great deal is now

known about C d and _, and it is easy to measure A N and M_,
before launch, thls method can be used to measure variations of

the in-track velocity, V, during geomagnetic storms, and deduce

the wind, W. A closed-source mass spectrometer would respond to

velocity like a pressure gauge.

At the Meeting, Killeen 13 compared winds deduced from a

ground-based Michelson interferometer with those computed by the

NCAR Thermospheric General Circulation Model (TGCM). There was

gross agreement, but there were large differences locally. The

reason is that the TGCM uses a smoothly varying auroral oval,

whereas the actual variation of ionospheric conductivity, hence

the power input shown in Fig. 4, was complex. 14 It therefore

would be helpful to have a method, such as the one just

described, for measuring the in-track winds in orbit. Then the

air drag could be computed from a model for comparison with that

measured, without assuming that that in-track wind was zero.
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DIFFICULTIES OF THE TGCM'S

(Sections 4 and 5)

4. Incomplete knowledge of Sources and Sinks

The solar extreme ultraviolet (EUV) radiation, which is an

important energy source, is not routinely monitored. Even when

it is, the sensors decay rapidly, so it appears that the 10.7 cm

solar radio noise FI0 7 which, like the EUV, originates in the
lower chromosphere, will continue to be used as a surrogate (as

long as the Canadians continue to monitor it). According to

Hinteregger, 15 Fin 7 sometimes deviates from the EUV by a
v.. ' " ' tsignificant amoun£ for weeks, but Hedln said at the meetlng tha

he has investigated the problem and found FI0.7 satisfactory for

most practical applications.

The large uncertainties in the energy sources are related

to the solar wind. Fig. 5 shows Olson's model of the solar

wind. 16 The complex interaction of the solar wind with the

Earth's magnetic field produces the magnetospheric cavity, which

largely shields the thermosphere from direct impingement of the

solar wind. However, the solar wind does penetrate through the

bow shock into regions of low magnetic field, i.e., the dayside

cusps, polar caps, and the tail. Spacecraft measurements show

that energy is always being deposited in the thermosphere by

particles precipitating through the dayside cusps, although the
latitudes at which they precipitate varies with Kp. The

resulting heating of the thermosphere was first calculated by
Olson.

The energy inputs to the atmosphere through the polar caps

and tail are more sporadic, except for the ion drag associated

with magnetospheric convection. _ The magnetic perturbations

caused by ionospheric disturbance currents are represented by

such indices as Kp, Ap, and AE. There still is controversy

about the conditions which permit the entry of solar wind plasma

into the magnetosphere and thermosphere, but such parameters as

B. and Bz, which are components of the interplanetary magnetic
f{eld, appear to be important. The number density and velocity

of the solar wind, which often increase after solar

disturbances, are important also.

Kamide and Baumjohann 14 have recently shown that in order

to calculate the complicated pattern of Joule heating during a

geomagnetic storm, one must first collect the data from 57

magnetometer stations in the Northern Hemisphere and then place

these data in Rice University's 3-dimensional ionospheric

conductivity model. Only then is one ready to calculate the

energy source as a function of space and time. A glance at Fig.

4, which shows the patterns of power production derived by

Kamide and Baumjohann at particular times during two substorms,

reveals how complicated the patterns are, and how different. (A

satellite pass through these changing patterns every 90 minutes
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could not hope to derive this structure.) The NCAR general
circulation model has now been modified so it can accept the
total energy derived from this 3-dimensional Joule heating as an
input, although the total energy is used simply to expand the
auroral oval. The NCAR GCM does have IR cooling by CO2, but
there are several other aspects of the auroral and airglow loss
mechanisms which also must be measured, or at least modeled. No
doubt these are parameterized in some way in the TGCM. Another
important loss mechanism during storms which recently has been
discovered is the outflow of 0+ into the geomagnetic tail (the
excited polar wind). 19' 20 In addition, the direct energy input
from precipitating electrons and protons must also be measured
aild modeled, if the actual energy inputs are to be used instead
of the correlation with _, Kp, or AE. This apparently is done
in the NCARcalculation.

Actually, only half the Joule heating can be calculated by
Kamide and Baumjohann's method, because there are insufficient
geomagnetic stations in the Southern Hemisphere to calculate the
detailed pattern of ionospheric conductivity there. Since the
earth's magnetic field points in opposite directions in the
northern and southern hemispheres, and one hemisphere is usually
illuminated while the other is dark, the energy input in the two
auroral zones could be quite different in magnitude and spatial
pattern. Fortunately, there is an approximate alternative
method which can be implemented in real time and may be useful
for modeling calculations. It was shown 15 years ago that the
response of the temperature of a static diffusion model to the
net energy inputs from the magnetosphere during storms can be
modeled by letting the ionospheric conductivity vary as the 5/4
power of the integrated disturbance currents, zz This was done
as follows: The disturbance currents as a function of latitude
and Ap were determined, by using data from 20 magnetic
observatories. 23 By integrating the disturbance currents
corresponding to various values of Ap, and inserting them in
Cole's theory of Joule heating, 24 the temperature increase
corresponding with various functional relationships between the
ionospheric conductivity and the integrated disturbance current
were derived _see Fig. 6). Comparison with the experimental
measurements 2- giving the temperature increase in Fig. 7
suggested the relationship

O_ o< J 5/4, where (/is the Cowling conductivity.

Other important processes include the ring current, gravity
waves, convection, and turbulence. The ring current, which is
indexed by the quantity DST, is caused by the drift of electrons
and protons in the Van Allen belts. The ring current decays by
the precipitation of charged particles from low L-shells into
the South Atlantic Anomaly, and the auroral and sub-auroral
thermosphere. Evidence of this decay can be seen in SAR arcs 26-
28 and in red airglow near the South Atlantic Anomaly, but this
airglow which identifies the region of energy input is actually
a loss mechanism, because the light is escaping from the
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thermosphere rather than heating it. DST is largest during
geomagnetic storms. It decays to a low level in a few days.

Gravity waves and tidal waves are carrying energy from the

lower and middle atmosphere into the thermosphere at all times.

In addition, gravity waves generated in the auroral zone,

particularly under disturbed conditions, carry energy to low

latitudes. 26 AUrQ[ally generated gravity^waves are well modeled

by GCM_. Hine's z_ Chapman and Lindzen, Ju and Forbes and

Marcos J± have made important contributions to our understanding

of waves which propagate into the thermosphere from below. Some

of Forbes and Marcos' theoretical predictions of semidiurnal and

diurnal variations in the lower thermosphere have been

experimentally verified, 32 so it is important to have these

tidal variations in the thermospheric models. The NCAR GCM has

now included a wave input from below by "Rippling the Boundary".

Hedin, et al. 33 found direct evidence of transport processes in

the diurnal tide.

Perhaps the most difficult part of the entire circulation

problem is to know how to calculate the atmospheric motions near

the mesopause, which involve a superposition of laminar and

turbulent flows. General circulation models could add greatly

to our understanding of this relatively unexplored region if

they would treat this interface more realistically. This need

can be illustrated by considering atmospheric effects of the

dayside cusp precipitation. Fig. 8 shows the electron density

at 600 km measured by Alouette 1 in the polar winter, and the

corres_Qnding region of dayside cusp precipitation (shaded
area). J_ Because the lifetime of electrons is only a few

minutes, and because field lines limit diffusion out of the

excited region, the region of enhanced ionization does not

spread out. But compare the neutral density bulges beneath the

dayside cusps measured by Logacs and Spades in Figs. 9 and I0.

The neutral bulges have half widths of about 20 ° in latitude,

which could result from motion out of the heated region in

response to the pressure gradient. The time it takes for the

heat energy to be carried down into the mesosphere and the ratio

of atomic oxygen to the molecular constituents are determined by

the molecular and eddy conductivities near the mesosphere-

thermosphere boundary. 35-36 Fig. ii shows how composition

depends on eddy diffusion. A better understanding of these

processes, including their variation with geomagnetic

activity, 37 would be helpful in modeling the ionosphere and

airglow as well as the neutral atmosphere.

One other difficulty in using TGCM's should be mentioned:

How can they calculate the atmospheric variations which result

from an unknown cause; e.g., the semiannual variation? Perhaps

the modelers will choose to try the recent theory of

Walterscheid. 38 Anyone who attempts to compute a realistic

model of the thermosphere using a GCM obviously will have a

difficult time, but it is well worth the effort: General

circulation models are continually adding to our understanding
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of the important thermospheric processes, and will provide

guidance in refining the empirical models which will continue to

be used for practical applications.

5. Limitations imposed by the Parameterizations

The errors in the computed winds caused by simply

parameterizing the auroral heat input have already been alluded

to. Atomic oxygen must be parameterized in some way because the

rigid lower boundary at 97 km prevents 0 from diffusing down

into the mesosphere where it recombines. The thousands of

auroral lines must somehow be approximated. In spite of the

remarkable results achieved by the NCAR TGCM, we have a long way

to go before a thermospheric model can be calculated from first

principles.

The process described by Mayr, et al. is continuing39:

"From the theoretical side, one is faced with the problem of

solving a large set on nonlinear, partial differential equations

in three dimensions that relate the hydrodynamics and

electrodynamic properties of the neutral and ionized components

in the atmosphere to the energy, mass, and momentum sources of

the magnetosphere-thermosphere-lower atmosphere system. We are

far removed from such a comprehensive model. With the help of

simplified concepts the analysis is just beginning to explore

isolated regions and interaction processes to provide

understanding and guidance for the development of more

sophisticated models."
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DIFFICULTIES OF THE EMPIRICAL MODELS

(Sections 6 and 7)

6. Limitations imposed by the conceptual framework

The theory of static diffusion models was developed in the

1950's by Nicolet and Mange. 40 It has been applied most

successfully by Jacchia and Slowey. 41 The fundamental idea is

that the air expands in a vertical column in response to UV

heating and conductive cooling. The models have been modified

by Jacchia and Slowey into quite a flexible instrument for

representing the real thermosphere and visualizing its response

to various energy sources, although it cannot have the

flexibility conferred by dozens of harmonics. Judging from the

discussion, it has been difficult to include composition

realistically in the Jacchia-Slowey models, but they are ideal

for calculating density efficiently. Slowey has now added a

response to cusp heating. To reduce the discrepancy when

comparing these models with measurements, it would be desirable
to add a wind vector to them. The wind vector and its standard

deviation could be estimated by comparing TGCM calculated winds

with the various kinds of wind measurements.

Another type of empirical model, the MSIS, uses spherical

harmonics. 42 It appears more successful at representing the

composition. It seems less well suited to represent the cusp

heating. This is especially true if an ionospheric model along

the same lines is planned. As can be seen from Fig. 8, five or

ten times as many harmonics would be needed to represent the

effect of the cusp on the ionosphere.

The empirical models only require a few input parameters,

including FI0 7 to approximate the EUV, and Ap, Kp, or AE to
approximate t_e net energy input from the solar wind during

geomagnetic storms.

7. Waves, which cannot be included in Empirical Models.

The atmosphere is full of gravity waves, which have many

sources, and are continually changing. They cannot be included

in the empirical models. Two examples are shown in Fig. 12. 43

Although realistic lookina waves are^produced by the TGCM's of

the University of London 44 and NCAR, z_ the actual waves are

likely to differ from those modeled at a particular time because

of the auroral source is greatly simplified in these models, and

the source in tropospheric weather systems is completely

excluded. One of the important processes affecting gravity

waves is dissipation. This can be measured by the method

recently developed by Tedd, et al. 45

Waves are of little importance in satellite orbital

calculations, because they are nearly averaged out by

integration; but waves would be important if one had to know the
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exact density at a particular place and time.
know that is to measure it.

The only way to

8. Conclusions

In conclusion, there are at least six causes of

disagreement between measurements and models, not all of which

are caused by the models. TGCM's have made great progress

lately, and they, along with wind measurements, will be helpful

in improving the empirical models, which will continue to be

used for practical calculations.
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